oktaciC

Optimizing External M2M Token Usage

Customized Solution Design

Contents

Document Control

Executive Summary
Problem
Solution

Architecture
Baseline: Direct Communication with AuthO Endpoint
Use Case Scenario #1: Passthrough Middleware
Considerations
Use Case Scenario #2: Cache Tokens Using Middleware
Considerations
Proof-of-Concept
server.js
cache.js
Incorporating IP Address Allow List
Additional Considerations
Incorporating Client Secret Encryption
Additional Considerations

Use Case Scenario #3: Restricting the use of the /oauth/token endpoint

Appendix A

Document Control

okta

-

© © 00 0 4 O 0O O O b W W N NN

S

=3
-

Revision
Author Date Version Comment
Peter Fernandez 17th February 2023 2.5 Updated document for publication

mailto:peter.fernandez@okta.com

okta

Executive Summary

This document is meant to examine various scenarios concerning the external use of access
tokens obtained via a Client Credentials exchange. Discussion in this document is primarily aimed
at use cases for Customer Identity Cloud (CIC) consumers who want to avoid running through
their allotted Machine-to-Machine (M2M) token quota when utilizing externally implemented
services. The document has been created because there is currently no out-of-the-box solution
that CIC provides, and running through tokens quickly and using them ineffectively can be a pain
point for our customers. Not to mention a costly one.

The solution options provided in this document typically address business-to-business (B2B) use
cases, and also present some generic best practices on what to consider. They are also
presented in a progressive manner, starting with some basic designs and then moving to more
advanced implementations that explore different ways to restrict direct interaction with CIC’s
/oauth/token endpoint. For each option, we’ll review guidance on implementation, discuss
known issues and risks, and highlight any expected maintenance.

Problem

The Client Credentials Flow is a commonly used scenario in which a Machine-to-Machine (M2M)
application passes along its Client ID and Client Secret to the AuthO' /oauth/token endpoint
to obtain a new Access Token. The frequency of this transaction, precipitated by the external
misuse of token lifespan, can mean M2M usage can quickly become expensive for a customer. To
mitigate this, it can be necessary to implement countermeasures - such as token throttling and/or
token caching - in order to force better utilization of the full potential and lifespan of an allocated
token.

Solution

The guidance provided is intended to examine various scenarios for the caching, et al, of these
valuable token resources. The goal is to get more use out of the tokens during their lifespan (by
default, 24 hours) and to help customers decelerate external token requests in an effort to avoid
hitting their allotted quota too quickly. See the Architecture section below for more details.

' AuthO is synonymous with Okta CIC.

https://auth0.com/docs/get-started/authentication-and-authorization-flow/client-credentials-flow
https://www.okta.com/blog/2022/11/okta-cic-for-saas-apps/

okta

Architecture

Below, we explore 3 use case scenarios that include various degrees of monitoring, caching,
and/or restricting on the /oauth/token endpoint. The designs progress from simple to more
complex and offer general approaches that have pros and cons to each. One solution may fit
your use case better than the rest. For this reason, each must be considered in detail before
implementation. The guidance provided can be helpful for a variety of scenarios. See below for a
few examples in which an AuthO customer may consider implementing some form of monitoring,
caching, and/or restricting of the /oauth/token endpoint.

e An AuthO customer with multiple teams who are responsible for products that have an
M2M interaction between them.

e An AuthO customer with multiple partners/clients that interact with their APIs using M2M
tokens.

e An AuthO customer with their own implementation that is requesting more tokens than
needed.

First, we’ll review a basic out-of-the-box flow to make sure we have familiarity with how a
consumer can interact directly with the AuthO /oauth/token endpoint. Then we’ll look into
implementing monitoring. Followed by token caching, where a consumer still has access to the
AuthO endpoints. And finally, for some more advanced scenarios, we examine ways in which to
also restrict the use of the AuthO /ocauth/token endpoint. In these use case scenarios,
middleware and caching can be implemented with different technologies, so each design can be
modified to fit something you may already be using.

Baseline: Direct Communication with AuthO Endpoint

The diagram below illustrates a very basic out-of-the-box flow where a consumer interacts
directly with the AuthO /ocauth/token endpoint. Here the consumer sends Client ID, Client
Secret, Audience. and Grant Tvpe to get back an Access Token with an Expiration (in seconds). In
this basic flow, both the consumer and AuthO know the Client Secret. The consumer will be
responsible for applying best practices by reusing the Access Token as much as possible. This
will represent our starting point.

Client ID/Client Secret/Audience

\J

Consumer AuthO

https://auth0.com/docs/secure/tokens/access-tokens/get-access-tokens#parameters
https://auth0.com/docs/secure/tokens/access-tokens/get-access-tokens#parameters

okta

Use Case Scenario #1: Passthrough Middleware

In this scenario, we’ll introduce a middleware that will sit between the consumer and the AuthO
endpoint for token allocation. Here the consumer sends the Client ID, Client Secret, and
Audience through to the middleware, and the middleware will then interact with AuthO’s
/oauth/token endpoint to retrieve the Access Token. Once the token has been issued, it will
then get sent back to the consumer. See the diagram below for the flow

r—— " """ -"—-""-"7""7"7""/"”/”""/”7”7 Client IDIClient Secret/Audience T a

A
\d

>
El
=r
[=]

Client ID/Client Secret/Audience Client ID/Client Secret/Audience

Consumer

Middleware I

This scenario does not offer guidance for caching/re-using tokens, nor does it quell token over
usage. Instead, we simply introduce middleware as a mechanism to start monitoring token usage
and also evaluate the habits of the consumer. There is a chance that the consumer could already
be reusing their unexpired Access Tokens, but if that is not the case, this can be a good starting
point in which to determine if there are additional steps that need to be taken (i.e. in order to stay
within the bounds of your allotted M2M token quota).

Considerations

e Although the primary goal is to have all interactions between the consumer and the AuthO
/oauth/token endpoint pass through the middleware, the consumer also has the
ability to bypass and interact directly with AuthO’s /oauth/token endpoint. This will
prevent you from getting an accurate picture of what interactions are taking place.

e An additional attack vector is introduced here since we are now sharing the Client ID,
Client Secret and Audience with the middleware as well.

e Quota monitoring will require some maintenance and planning. It will be helpful to plot out
how the gathered data will be used and what the thresholds are for acting on it.

okta

Use Case Scenario #2: Cache Tokens Using Middleware

Here we build upon Use Case Scenario #1. In this scenario, we will introduce a cache to store the
tokens so they can be reused by the consumer. In an ideal world, in-application caching - see
Appendix A for further details - should be adopted as the preferred caching method of choice. In
reality, though, the ability to enforce this is almost impossible. The notion then of building some
form of independent cache mechanism - through which all (3rd party) M2M token allocation is
directed - sounds appealing. However, the challenges associated with doing this can be
prohibitive if best practice guidance is not adopted.

In this flow, the consumer sends the request to middleware, and the middleware is responsible
for returning the cached response if the token is found. Where a valid cached token is found no
additional request is sent to AuthO. If no valid token is found, the middleware is responsible for
making the /oauth/token request and caching the response prior to returning it to the
consumer. The token should be cached using the expiry provided by the /oauth/token
response and the middleware should use a hash of the consumer's request as the key for the
cache record. See the diagram below.

Whilst the Client Secret will still pass through the middleware, using a hash of the
consumer’s request also mitigates the need to store it in any (semi) persistent form.

r-r——>""~>""">™>""™>""™""™>""™>"™""™>""™>"™>""™"7 ClientIDIClient Secret/Audience T T T T T 7 1

Client IDIClient Secret/Audience . Client IDIClient Secret/Audience
Consumer Middleware AuthD

Cache

The following can also be made to further restrict the access available to the consumer:

e Restrict access to the /oauth/token endpoint by enforcing an IP allowlist through a
credentials-exchange Action. See below for more details. This ensures that no
M2M tokens can be generated without using the middleware.

e Encrypting the response in the cache. See below for more details. This prevents tokens
from being leaked by unauthorized access to the cache.

okta

Considerations

e Although the primary goal is to have all interactions between the consumer and the AuthO
/oauth/token endpoint pass through the middleware, the consumer also has the
ability to bypass and interact directly with AuthO’s /oauth/token endpoint. This will
prevent you from getting an accurate picture of what interactions are taking place.

e Additional attack vectors have been introduced here since we are now sharing the Client
ID, Client Secret and Audience with the middleware and the cache will know the Access
Token. See the guidance in Appendix A for additional advice on prospective
countermeasures.

e Although we are implementing a cache to store and reuse tokens, some consumers may
know how to bypass the middleware and abuse the /oauth/token endpoint. Because
of this, it will be beneficial to continue monitoring of token quota as discussed in the
section above.

e Expect to monitor and clear your cache periodically to keep data from becoming stale and
accumulating.

Proof-of-Concept

The sample code below provides a Proof-of-Concept (POC) example for storing the tokens in a
memory cache on your system. Please note the POC is provided purely by way of illustration; no
warranty - either assumed or otherwise - is provided. Though not included here, you will need to
make a call to the /oauth/token endpoint as part of any implementation in order to get the
token so it can be cached. You should also keep in mind that any memory cache will get wiped
on termination, and factor that into your solution.

server.js

const app = require ('express');

const getToken = require('./token');

const getCached = require('./cache');

const singleAudience = require('./singleAudience');

const router = app.Router();

router.post ('/cached', singleAudience, async function (req, res) {
console.log ('Passthrough/Cached") ;

res.json (await getCached (
req.body.client id,
reqg.body.client secret,
req.body.audience,

okta

)) i
})

module.exports = router;
cache.js
const config = require('../config/config.json');

const NodeCache = require('node-cache');

const getToken = require('./token');

const time = require('./time');

const cache = new NodeCache();

const expiresInPercentage = (expiresIn, percentage) => {
return expiresIn * percentage / 100;

}i

const getCached async (client id, client secret, audience) => {
const keyCode = new Buffer.from(client id + client secret +

audience) .toString ('base64d');

const cached = cache.get (keyCode) ;

if (cached) {
return cached;

const response = await getToken ({
client id,
client secret,
audience,

)

cache.set (
keyCode,
response,
response.expiration timestamp - time.secondsToMilliseconds (
expiresInPercentage (
response.expires in,

config.expiresInPercentage

)

return response;

b

module.exports = getCached;

okta

Incorporating IP Address Allow List

In order to further restrict undesired M2M access to the /ocauth/token endpoint, a
credentials-exchange Action can be introduced to restrict access to the address space
used by the caching middleware. The Action can also have a list of Resource Servers that should
skip the IP Address Allow List check. A sample implementation of this action can be found below.

r- T T T T T T T T T T T T T T cl Enﬁ[)ﬁas?erﬁl@lﬁe?elﬁtﬁieﬁ:e_ ________________ _]
' ¥
Client ID/Hashed(Client Secret)/Audience A Client ID/Client Secret/Audience
Caonsumer »| Midc e > Auth0
‘—
Cache

/**
* Handler that will be called during the execution of a Client Credentials exchange.
*
* @param {Event} event - Details about client credentials grant request.
* @param {CredentialsExchangeAPI} api - Interface whose methods can be used to change
the behavior of client credentials grant.
*/
exports.onExecuteCredentialsExchange = async (event, api) => {

const resourceServerDenylist = [

'"[https://[TENANT DOMAIN]/api/v2/"'

if (resourceServerDenylist.includes (event.resource server.identifier)) ({

return;

const ipAllowlist = [
'[IP_ADDRESS]'
17

if (!ipAllowlist.includes (event.request.ip)) {
api.access.deny('invalid request', "NO NO NO!");
}
}i

Additional Considerations

e Maintain the Allow Listed IP addresses if more than Middleware is going to do interaction
with AuthO.

okta

e Maintain the Blacklisted Resource Servers as APIs that require it are added in the Tenant

e Expect to monitor and clear your cache periodically to keep data from becoming stale.

Incorporating Client Secret Encryption

The scenario below offers another option for restricting direct access to the /oauth/token
endpoint. By adding this restriction, the Client Secret has fewer components handling it and more
security as a result.

The consumer will send an encrypted Client Secret through to the middleware, and then the

middleware can decrypt the value and proceed with the process of calling the /oauth/token
endpoint. The consumer does not know the Client Secret in this scenario.

r T T T T T T T T T 7 7 7 7 7 ClientiDIEncrypted(Client Secret)lAudience n

Client ID/Encrypted(Client Secret)/Audience ~ Client IDIClient Secret/Audience
Consumer Middleware = AuthO

Cache

Y

Additional Considerations

e The Client Secret can be decrypted over time, but this shouldn’t be a concern as the
consumers are not expected to look for it in a B2B scenario.

e Additional processing to decrypt the Client Secret could cause issues if not done
correctly.

e Additional work to deliver the encrypted Client Secrets to the consumers.
e Expect additional maintenance around

o Encryption Secret Rotation
o Delivering encrypted Client Secrets to consumers securely

okta

Use Case Scenario #3: Restricting the use of the /oauth/token
endpoint

It may be an option to throttle 3rd party token allocation via the use of some form of Access
Token restriction mechanism. Using either the AuthO Client Credentials Exchange Hook - or
preferably the credentials-exchange Actions Trigger - noisy 3rd parties who make
excessive M2M Access Token calls to AuthO could be detected, and call from these offenders
throttled by rejecting Access Token allocation. This would directly help address the problems
described in the section above, whilst at the same time forcing 3rd parties who do not want to be
“penalized” to address matters - ideally by implementing their own in-application caching as
discussed in Appendix A.

10

https://auth0.com/docs/hooks/extensibility-points/client-credentials-exchange
https://auth0.com/docs/actions/triggers/credentials-exchange

okta

Appendix A

In-application caching is essentially the process of using temporary storage within an M2M
Application context, in which to store an Access Token. In-application caching is often, and most
easily, implemented via the use of some technology stack compatible library/middleware which
ideally should implement the caching mechanism in such a way as to observe the following:

Indexing that takes into consideration the context for Access Token use. Access Tokens
are designed to allow authorized access to an APl and, as such, carry scope - the
standards-based token claim that essentially defines what information can be obtained
from an API. For M2M communication, scope directly relates to the access permission(s)
granted to the token. Following the Principle of Least Privilege then (see here), any
caching mechanism should prevent a consumer from obtaining a cached token that may
have elevated access permissions.

Secure handling of the Client Secret. Client Credentials flow makes use of a Client ID
and a Client Secret. Whilst the Client ID is typically a public asset, the Client Secret is
typically only known by an M2M Application and AuthO. The use of a library/middleware
implementation reduces the risk of a Client Secret being misappropriated as, technically,
execution is still within the application context. However, care should still be taken with
the Client Secret value as it is a piece of security-sensitive information. Additionally,
standard best practice should be observed by the M2M Application, where the Client
Secret is stored in a secured environment space rather than embedding it directly into the
application (direct embedding into the application can lead to the Client Secret being
leaked via source control).

Temporary storage that is highly secure. Whilst not excessively so in an in-application
context, temporary storage does typically become a central location for multiple Access
Tokens with varying degrees of access permission. So temporary storage needs to be
highly secure in order to prevent any attack resulting in Access Token leakage (which
could have serious security implications), and mechanisms such as the following should
be considered:

o Prefer to use in-memory/non-persistent cache storage over storage that is
persistent/disk-based. This limits the potential attack surface.

o If persistent/disk-based storage must be used - such as in scenarios where an
M2M application is distributed in nature (i.e. multi-instance) - prefer to limit access
from authorized endpoints only. Such as via IP Address AllowListing, etc. Again,
this limits the surface for a potential attack.

11

https://en.wikipedia.org/wiki/Principle_of_least_privilege

